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The behavior of a grafted chain of length K inside an otherwise monodispersed (of length V)
polymer brush is investigated. For the case of K < N, the stretching of the chain increases abruptly
as K approaches N, analogous to the coil-stretch transition. By generalizing previous results, we
derive the scaling forms for the stretching parameter and its mean square fluctuations. We also
extend our investigation to the K > N regime and obtain results for the stretching parameter
by scaling calculations. We show that the chain is maximally stretched as K — N from above.
Furthermore, we perform a Monte Carlo simulation using the bond-fluctuation model to study the
chain end position and its fluctuations. Our data indicate that both the stretching of the chain and
its fluctuation are maximal at K = N and the system exhibits a first-order phase transition. The
scaling form for the stretching parameter is verified and the scaling function is obtained.

PACS number(s): 61.25.Hq, 64.60.—i, 83.20.Jp

I. INTRODUCTION

Polymer chains with one end grafted on a surface
have drawn a lot of research interest in recent years (see
Refs. [1-3] for a review) because of their numerous appli-
cation in technologies. Furthermore, such grafted poly-
mer layers are of great theoretical and experimental inter-
ests since the stretched configurations of these chains give
rise to very unique physical properties. Recently, Klushin
and Skvortsov [4] proposed that the grafted polymer layer
can be viewed as a critical system in the following sense.
Imagine a shorter grafted chain (of length K) inside an
otherwise monodispersed polymer brush (of chain length
N). The fluctuation of this short chain increases and di-
verges (proportional to N) as its chain length approaches
N from below and the system becomes critical. Such a
behavior is reminiscent of some kind of “resonance” ef-
fect in which the amplitude of fluctuation grows when the
chain is at the “resonant length.” Since the theory in-
volved the use of the self-consistent field (SCF) theory, a
mean-field approximation, which may not quantitatively
describe the system accurately, it is important to have
an independent investigation that involves either few or
no assumptions. In this situation, computer simulation
would be a very desirable method. Furthermore, if the
system is truly a critical system, then one expects the
system to become critical when the chain length K — N
from above also. However, previous studies [4,5] did not
include the K > N situation because SCF theory does
not give an accurate description for the behavior of a
longer chain inside a brush of length N < K. Hence it
would be desirable to extend the study to the N < K
case and obtain results by other means, namely, com-
puter simulations and scaling calculations. Indeed our
results indicate that the transition is first order instead
of second order, contrary to the results suggested previ-
ously in Ref. [4].

In this paper, we investigate a polymer brush with one
chain of a different length in a good solvent and charac-
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terize its scaling behavior. Previous results by Klushin
and Skvortsov [4] for a shorter chain in a brush are gen-
eralized to obtain the crossover scaling forms for the fi-
nite chain lengths. We also extend the study to the
regime for a longer chain in a brush and obtain results for
the chain end position using simple scaling calculations.
We perform a Monte Carlo simulation, using the bond-
fluctuation model, to check upon our proposed scaling
forms and the SCF values of the exponents. The simula-
tion study is of interest because conventional analytical
SCF methods [6,7] often ignore fluctuation effects which
may be qualitatively important in the critical proper-
ties. Also these effects can be probed easily in a sim-
ulation. This study should provide some fundamental
understanding for the fluctuation effects in the grafted
polymer layers and also useful information about the dy-
namical response of the system.

II. TRANSITION BEHAVIOR
AND SCALING FORMS

The system we have in mind is a grafted polymer
brush composed of monodispersed chains each with N
monomers and one end fixed on some impenetrable plane
(the z-y plane); the z position of the ith monomer along
the chain is labeled by z;. The grafting density o is
understood to take values that ensure that the system
is in the brush regime. It has been shown using the
scaling [8] and SCF theory [4,9] and also confirmed by
Monte Carlo simulations [8,9] that the chain end fluc-
tuations in a monodispersed grafted polymer layer are
anomalously high with (§zxy) ~ N as compared to the
Gaussian-type fluctuations (~ Nl/z). By observing the
fact that large fluctuations are often associated with a
system near second-order phase transitions, Klushin and
Skvortsov [4] showed that the chain behavior in a grafted
brush corresponds to the vicinity of a coil-stretch tran-
sition [10]. We shall briefly go through their arguments
here for the sake of completeness. According to SCF
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theory [6,7], each monomer is subjected to a parabolic
self-consistent potential

- L
U(z) = const — SaIN2Z? (1)

for 0 < z < h, where h is the brush height and a is the
monomer size. This parabolic potential leads to a force
in the direction of +z, which tends to elongate the chain.
Thus the system is in analog with a free-draining chain
in an extensional flow [11,12] which is well known to un-
dergo a coil-stretch transition as the flow rate changes.
The point is that the critical flow rate for an ideal chain
is exactly equal [4] to the factor % in Eq. (1). They
also showed that, using SCF theory, a Landau-type free
energy for the shorter chain can be written down and at
K = N, each chain in the brush is exactly at the coil-
stretch second-order transition point and thus leads to
the strong chain end fluctuations. However, this is in
major disagreement with the results of Ref. [11] (using
transfer-matrix method), which indicated that the chain
under an external parabolic stretching potential under-
goes a first-order phase transition instead of a second-
order transition [4]. One of the purposes of our present
work is to attempt to clarify the above discrepancy using
Monte Carlo simulations.

A. Short chain behavior in a brush

This transition behavior can better be observed if a
single shorter chain of length K is placed inside an oth-
erwise monodispersed brush of length V. The short chain
can be considered to be under the action of an external
potential given by Eq. (1) and by increasing the length
of the shorter chain, the transition can be monitored as
K — N. To describe the transition behavior, we follow
Ref. [4] and introduce

A=1-K/N (2)

as the tuning parameter for the deviation from the tran-
sition point and

n=(zx)/K 3)

for the parameter of chain stretching, which is the order
parameter for the phase transition. The mean square
deviation of the chain end is denoted by (§z%).

Using SCF theory, it was shown that [4] (zx) and
(62%) increase dramatically according to the power laws
(zx) ~ (62%)Y/2 ~ K—1/2X71/2 for 1/(No?/?) < XA < 1.
Corrections to the mean-field behavior may change the
values of the exponents and in general one can write down
the scaling of the end position of the K chain as

(2x) ~ KPA~S (4)

for some exponents 3 and §. However, at A\=0 (K = N
is a true monodispersed brush), (zx) is limited by the
brush height and is proportional to K [6-9]. Hence we
propose the scaling of 77 to be of the form

= = jonta ), (5)
where f(z) is some scaling function with f(z) ~ =18
for z > 1.

Similarly, the power law growth of the mean square
fluctuation can be written in the form

(52%) ~ KA~ (6)

for some exponent a and y. However, a true divergence
of (6z%) will not occur since at A = 0 (K = N) the
fluctuation is limited by the brush height. It has been
shown both from Monte Carlo simulations [8] and SCF
results [9] that (§z%) o« K? for a monodispersed brush of
length K. Thus the fluctuation of the shorter chain can
be described in terms of the scaling form

(o) = L) _ (i), ™)

where g(z) is some scaling function with g(z) ~ z =)
for £ > 1. Mean-field (SCF) theory predicts the values
of these exponents to be [4]

a=y=1=6= (8)

1
3
B. The case with K > N (A < 0)

In this case, the K chain is longer and one expects that
it would assume a “mushroom” configuration [13]. The
SCF result will not work in this case since the portion of
the K chain above the brush is not stretched. However,
one can use a simple scaling calculation to obtain the
qualitative behavior of chain stretching as a function of
A as follows. One can picture the mushroomlike K chain
consisting of a stretched portion inside the brush and the
number of monomers in this portion is very close to N;
the rest of the X — N monomers form the head of the
mushroom and stay above the brush. Thus the average
end position of the K chain can be written as a sum of
the heights of these two portions

(zk) ~ ac'3N + a(K — N)?, 9)

where a is the monomer size, o is the surface coverage,
and v ~ 0.59 is the usual self-avoiding walk exponent.
The first term in (9) is the chain length of a monodis-
persed brush [6-8] and the second term is the dimension
of a chain of length K — N in a good solvent. The relative
weights of the two terms in (9) may differ by a factor of
order unity in reality, but for simplicity they are taken to
be the same. In terms of the parameter of chain stretch-
ing as defined in (3) and with A = —|)\|, Eq. (9) can be
rewritten as

a [A[Y

For A = 0 Eq. (10) reduces to the well-known result of
a monodispersed brush (n) ~ ac!/3. It is obvious that
(n) — 0 for A - —oo and it is easy to verify that Eq. (10)
for (n) has a single maximum at



2274 PIK-YIN LAI AND JAU-ANN CHEN 51

Amax =~ — (ua_l/s) e /N (11)

for N > 1. Thus in the limit of long chain lengths (both
K and N are large), (n) has a peak at A = 0 and the
chain is stretched maximally at K = N. Hence, using
simple scaling calculations, we show that the K chain
is maximally stretched as A — 0—, which is compatible
with the SCF result in the limit A — 0+. Unfortunately,
the calculation for (§z%) does not follow in a similar way
since the fluctuations due to the stretched portion and
the rest of the mushroom portion are strongly correlated
and cannot be simply added up. These scaling predic-
tions and the values of the exponents from SCF results
will be tested in next section by Monte Carlo simulations.

III. SIMULATION DETAILS

The bond-fluctuation model [14] for a macromolecular
chain is used in the simulations. Previous simulations
using this model [8,13,15,16] have been very successful
in exploring the physical behavior of the grafted poly-
mer layers. In the bond-fluctuation model, we consider a
box of linear dimensions L x L x M, where one surface
of size L x L (in the z-y plane) is chosen as a grafting
surface and the other L x L surface at a large distance
M apart never restricts the configurations of the grafted
chains. We choose the periodic boundary conditions in
the z and y directions, while the two other boundaries
in the z direction (at z = 1 and z = M, respectively)
are treated as hard impenetrable walls. For the dimen-
sions of the box, we choose L = 32 and M = 3N + 1.
The grafting density is fixed to be 0.093 75, at which the
system is well in the brush regime from our previous ex-
perience of the system [8]. The anchoring site of the
chains in the monodispersed brush are randomly chosen,
but strictly self-avoiding grafting at the wall. We sim-
ply grow the chains linearly from their anchoring sites in
the +2z direction as the starting configurations. These
linearly stretched chains are then relaxed with the bond-
fluctuation algorithm for a long time. Typically, the equi-
librium time was chosen many times larger than the char-
acteristic relaxation time of the system of monodisperse
grafted polymers [8]. Measurement are then taken for
another extended period of Monte Carlo time. Since we
are interested in the behavior of a chain of length K in
a brush of length NV and in general K # N, the statis-
tics on the K chain is relatively low and extensive Monte
Carlo runs are required to accumulate reasonable statis-
tics. We studied brushes with N = 20-60 and with a
K-chain length up to 120. The cases with K > N are
also investigated in addition to the K < N situations.
In order to ensure that the results are genuine and not
accidental due to statistical fluctuations of the grafting
positions, several (typically 5-10) different realizations of
grafting sites are simulated and the results are averaged.
The end positions of the K chains and their fluctuations
are then measured.

IV. SIMULATION RESULTS AND DISCUSSIONS

The simulation results for the parameters of chain
stretching as defined in (3) as a function of A are shown
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FIG. 1. The parameter of chain stretching (n) plotted vs A.

in Fig. 1 in the range of both K > N and K < N. (n)
shows a peak near A = 0, which agrees with the theoreti-
cal consideration in Sec. II. Furthermore, the peak occurs
at some negative values of A,ax for finite N, as predicted
in Eq. (11). We also verified that |Amax| decreases as
N increases. In Fig. 2 we plot —Anax vs 1/N; the data
fall on a straight line within error bars consistent with
the scaling result Apax ~ 1/N in Eq. (11). Also revealed
in Fig. 2 is the fact that the transition as A — 0+ gets
sharper as the brush length N increases. In the long
chain limit (N — o0), the order parameter (n) becomes
discontinuous, indicating that the phase transition is first
order. Furthermore, no hysteresis is observed in our data.
The behavior of the order parameter is drawn schemati-
cally for N — oo in Fig. 3. The A < 0 behavior in Fig. 3 is
easily obtained from Eq. (10), namely, () ~ 1/(1 + |A]).
Thus our scaling analysis and Monte Carlo data indicate

0.8

0.6

02 f B I 1

0.0 = . : :
0.00 0.02 0.04 0.06 0.08

I/N

FIG. 2. —Amax versus 1/N as suggested in Eq. (11). The
straight line is just a guide for the eye.
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FIG. 3. Qualitative behavior of (n) as a function of A in
the long chain N — oo limit.

that the stretch transition at A = 0 is first order, con-
trary to Ref. [4], which suggested a second-order phase
transition. Our result should be compared to the coil-
stretch transition of an ideal polymer in an external field
in Ref. [11], which also exhibits a first-order transition.
A quadratic external potential acting on an end-grafted
polymer chain was considered in Ref. [11] and the stretch-
ing parameter showed a step function rise to the stretched
state as the strength of potential increases. The absence
of hysteresis was also found in the transfer-matrix calcu-
lations in Ref. [11]. However, there is a slight difference in
our case: after the system jumps to the stretched state,
the stretching parameter () decreases gradually upon
further changing the tuning parameter A in the A < 0
regime. This phenomenon can be easily understood as
follows: in the A < O regime (the K chain is longer), as
A decreases the mushroom portion of the chain increases
and hence the whole chain is effectively less stretched.
Figure 4 shows the fluctuation (6n?) versus J; it peaks
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FIG. 4. (61%) plotted vs A for N = 30 and 60.

around A = 0 showing that the fluctuation is maximal
at K = N, in agreement with the theoretical predictions
from the SCF theory. Also shown in the figure is that
the peak in (672) becomes sharper as N increases, but
the peak value stays constant. This shows that the chain
end fluctuation of the K chain is anomalously large at
the transition point with (§2%) o< K2.

To test for the scaling prediction in Eq. (5), Fig.
is a scaling plot with the SCF exponents 8 = § =
for different values of N. The data fall roughly onto
master curve for A > 0. However, for A < 0, since the
SCF theory does not work in this case, we do not expect
the data to scale and indeed the data do not collapse in
this regime. Unfortunately, the fluctuations ((6zx)?2) are
very strong near the A = 0 transition regime and increase
with N; we are unable to obtain results for brushes with
N > 30 with reasonable uncertainties to draw conclusion
about the scaling prediction and the values of the expo-
nents in Eq. (7) at the present stage of computing power.
Although we did not verify explicitly the scaling form in
Eq. (7), our results do show that a growth in fluctuations
at A = 0 is approached from above and below.

Using SCF theory, the free energy of the K chain for
A > 0 can be described [4] by a Landau-type free energy
(quadratic in 77) and thus lead to the suggestion that the
associated stretch transition is second order in Ref. [4].
However, it should be noted that this Landau free en-
ergy is valid only for A > 0, and in fact for A < 0, the
free energy takes a different functional form: the free
energy is explicitly nonanalytic at A = 0 and actually
gives rise to a first-order transition. This stretch transi-
tion in a polymer brush has the unique properties that
it is first order i.e., the first derivative of the free en-
ergy and the order parameter is discontinuous, but at
the same time bears many characteristic features that
are often seen in second order phase transitions. One
such feature is the the absence of hysteresis, which on
the contrary was often observed in the first-order coil-
stretch transitions of real polymers under elongational
flow [17,18]. Another feature is the large fluctuation we
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FIG. 5. Scaling plot of (n) vs AK as suggested in Eq. (5)
with 8 =6 = 1/2.
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have already seen. Third is the phenomenon of anoma-
lous slowing down, i.e., the relaxation time of the chain
is exceptionally large with, 7 ~ K3 (at A = 0), which
has been shown in Ref. [4] and confirmed by simulations
[8]. Very recently, an unusual first-order phase transition
that has many features of the second-order transition,
including the lack of metastable states and anomalous
slowing down, has been shown to exist in the adsorption-
stretching transition of an end-grafted Gaussian chain
[19,20]. We believe that the stretch transition in the poly-
mer brush can be described by a similar model and some
theoretical calculations are in progress. To conclude, our
results indicate that the stretched chain configurations in
a polymer brush can be understood in terms of a special

first-order stretch transition (which is different in nature
from the usual coil-stretch transition observed for poly-
mers in elongational flow), thus providing a distinct route
to the fundamental understanding of the physical prop-
erties of such systems.
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